複合材料

来源:www.uuuwell.com

   

複合材料(Composite materials),是由兩種或兩種以上不同性質的材料,通過物理或化學的方法,在宏觀上組成具有新性能的材料。各種材料在性能上互相取長補短,產生協同效應,使複合材料的綜合性能優於原組成材料而滿足各種不同的要求。複合材料的基體材料分為金屬和非金屬兩大類。金屬基體常用的有鋁、鎂、銅、鈦及其合金。非金屬基體主要有合成樹脂、橡膠、陶瓷、石墨、碳等。增強材料主要有玻璃纖維、碳纖維、硼纖維、芳綸纖維、碳化硅纖維、石棉纖維、晶須、金屬絲和硬質細粒等。

歷史

  複合材料使用的歷史可以追溯到古代。從古至今沿用的稻草增強粘土和已使用上百年的鋼筋混凝土均由兩種材料複合而成。20世紀40年代,因航空工業的需要,發展了玻璃纖維增強塑料(俗稱玻璃鋼),從此出現了複合材料這一名稱。50年代以後,陸續發展了碳纖維、石墨纖維和硼纖維等高強度和高模量纖維。70年代出現了芳綸纖維和碳化硅纖維。這些高強度、高模量纖維能與合成樹脂、碳、石墨、陶瓷、橡膠等非金屬基體或鋁、鎂、鈦等金屬基體複合,構成各具特色的複合材料。

分類

  複合材料是一種混合物。在很多領域都發揮了很大的作用,代替了很多傳統的材料。複合材料按其組成分為金屬與金屬複合材料、非金屬與金屬複合材料、非金屬與非金屬複合材料。按其結構特點又分為:①纖維增強複合材料。將各種纖維增強體置於基體材料內複合而成。如纖維增強塑料、纖維增強金屬等。②夾層複合材料。由性質不同的表面材料和芯材組合而成。通常面材強度高、薄;芯材質輕、強度低,但具有一定剛度和厚度。分為實心夾層和蜂窩夾層兩種。③細粒複合材料。將硬質細粒均勻分佈于基體中,如彌散強化合金、金屬陶瓷等。④混雜複合材料。由兩種或兩種以上增強相材料混雜于一種基體相材料中構成。與普通單增強相複合材料比,其衝擊強度、疲勞強度和斷裂韌性顯著提高,並具有特殊的熱膨脹性能。分為層內混雜、層間混雜、夾芯混雜、層內/層間混雜和超混雜複合材料。

五代戰機複合材料

  60年代,為滿足航空航天等尖端技術所用材料的需要,先後研製和生產了以高性能纖維(如碳纖維、硼纖維、芳綸纖維、碳化硅纖維等)為增強材料的複合材料,其比強度大於4×106厘米(cm),比模量大於4×108cm。為了與第一代玻璃纖維增強樹脂複合材料相區別,將這種複合材料稱為先進複合材料。按基體材料不同,先進複合材料分為樹脂基、金屬基和陶瓷基複合材料。其使用溫度分別達250~350℃、350~1200℃和1200℃以上。先進複合材料除作為結構材料外,還可用作功能材料,如梯度復 合材料(材料的化學和結晶學組成、結構、空隙等在空間連續梯變的功能複合材料)、機敏複合材料(具有感覺處理和執行功能,能適應環境變化的功能複合材料)、仿生複合材料、隱身複合材料等。

性能

再生樹脂複合材料

  複合材料中以纖維增強材料應用最廣、用量最大。其特點是比重小、比強度和比模量大。例如碳纖維與環氧樹脂複合的材料,其比強度和比模量均比鋼和鋁合金大數倍,還具有優良的化學穩定性、減摩耐磨、自潤滑、耐熱、耐疲勞、耐蠕變、消聲、電絕緣等性能。石墨纖維與樹脂複合可得到膨脹係數幾乎等於零的材料。纖維增強材料的另一個特點是各向異性,因此可按製件不同部位的強度要求設計纖維的排列。以碳纖維和碳化硅纖維增強的鋁基複合材料,在500℃時仍能保持足夠的強度和模量。碳化硅纖維與鈦複合,不但鈦的耐熱性提高,且耐磨損,可用作發動機風扇葉片。碳化硅纖維與陶瓷複合, 使用溫度可達1500℃,比超合金渦輪葉片的使用溫度(1100℃)高得多。碳纖維增強碳、石墨纖維增強碳或石墨纖維增強石墨,構成耐燒蝕材料,已用於航天器、火箭導彈和原子能反應堆中。非金屬基複合材料由於密度小,用於汽車和飛機可減輕重量、提高速度、節約能源。用碳纖維和玻璃纖維混合製成的複合材料片彈簧,其剛度和承載能力與重量大5倍多的鋼片彈簧相當。

成型方法

複合材料電纜支架

  複合材料的成型方法按基體材料不同各異。樹脂基複合材料的成型方法較多,有手糊成型、噴XX成型、纖維纏繞成型、模壓成型、拉擠成型、RTM成型、熱壓罐成型、隔膜成型、遷移成 型、反應注XX成型、軟膜膨脹成型、衝壓成型等。金屬基複合材料成型方法分為固相成型法和液相成型法。前者是在低於基體熔點溫度下,通過施加壓力實現成型,包括擴散焊接、粉末冶金、熱軋、熱拔、熱等靜壓和爆炸焊接等。後者是將基體熔化后,充填到增強體材料中,包括傳統鑄造、真空吸鑄、真空反壓鑄造、擠壓鑄造及噴鑄等、陶瓷基複合材料的成型方法主要有固相燒結、化學氣相浸滲成型、化學氣相沉積成型等。

納米複合材料

  複合材料由於其優良的綜合性能,特別是其性能的可設計性被廣泛應用於航空航天、國防、交通、體育等領域,納米複合材料則是其中最具吸引力的部分,近年來發展很快,世界發達國家新材料發展的戰略都把納米複合材料的發展放到重要的位置。該研究方向主要包括納米聚合物基複合材料、納米碳管功能複合材料、納米鎢銅複合材料。   在納米聚合物基複合材料方面,主要採用同向雙螺桿擠出方法分散納米粉體,分散水平達到納米級,得到了性能符合設計要求的納米複合材料。我們製備的納米蒙脫土/PA6複合材料中,納米蒙脫土的層間距為1.96nm,處於國內同類材料的領先水平(中國科學院為1.5~1.7nm),蒙脫土複合到尼龍基體中后完全剝離成為厚度1~1.5nm的納米微粒,其複合材料的耐溫性能、阻隔性能、抗吸水性能均非常優秀,此材料已經實現了產業化;正在開發的納米TiO2/聚丙烯複合材料具有優良的抗菌效果,納米TiO2粉體在聚丙烯中分散達到60nm以下,此項技術正在申報發明專利。由於納米聚合物複合材料的成型工藝不同於普通的聚合物,本方向還積極開展新的成型方法研究,以促進納米複合材料產業化的進行。   碳納米管是上個世紀九十年代初發現的一種新型的碳團簇類纖維材料,具有許多特別優秀的性能。我們在碳納米管取得的研究成果主要包括:   1)大規模生產多壁碳納米管的技術,生產出的碳納米管的質量處於世界先進水平,生產成本也很低,為碳納米管的工業應用創造了條件。   2)開發了製造碳納米管為電極材料的雙電層大容量電容器的技術。   3)開發了製造具有軟基底定向碳納米管膜的技術。   鎢銅複合材料具有良好的導電導熱性、低的熱膨脹係數而被廣泛地用作電接觸材料、電子封裝和熱沉材料。採用納米粉末製備的納米鎢銅複合材料具有非常優越的物理力學性能,我們採用國際前沿的金屬複合鹽溶液霧化乾燥還原技術成功製備了納米鎢銅複合粉體和納米氮化鎢-銅複合粉體,目前正在加緊其產業化應用研究。

功能複合材料

  功能複合材料是指除機械性能以外而提供其他物理性能的複合材料。如:導電、超導、半導、磁性、壓電、阻尼、吸波、透波、磨擦、屏蔽、阻燃、防熱、吸聲、隔熱等凸顯某一功能。統稱為功能複合材料。功能複合材料主要由功能體和增強體及基體組成。功能體可由一種或以上功能材料組成。多元功能體的複合材料可以具有多種功能。同時,還有可能由於複合效應而產生新的功能。多功能複合材料是功能複合材料的發展方向。

塑木複合材料

  塑木是以鋸末、木屑、竹屑、稻殼、麥秸、大豆皮、花生殼甘蔗渣、棉秸稈等低值生物質纖維為主原料,與塑料合成的一種複合材料。   它同時具備植物纖維和塑料的優點,適用範圍廣泛,幾乎可涵蓋所有原木、塑料、塑鋼、鋁合金及其它類似複合材料的使用領域,同時也解決了塑料、木材行業廢棄資源的再生利用問題。   其主要特點為:原料資源化、產品可塑化、使用環保化、成本經濟化、回收再生化

應用

應用領域

verton複合材料

  複合材料的主要應用領域有:①航空航天領域。由於複合材料熱穩定性好,比強度、比剛度高,可用於製造飛機機翼和前機身、衛星天線及其支撐結構、太陽能電池翼和外殼、大型運載火箭的 殼體、發動機殼體、太空梭結構件等。②汽車工業。由於複合材料具有特殊的振動阻尼特性,可減振和降低雜訊、抗疲勞性能好,損傷后易修理,便於整體成形,故可用於製造汽車車身、受力構件、傳動軸、發動機架及其內部構件。③化工、紡織機械製造領域。有良好耐蝕性的碳纖維與樹脂基體複合而成的材料,可用於製造化工設備、紡織機、造紙機、複印機、高速機床、精密儀器等。④醫學領域。碳纖維複合材料具有優異的力學性能和不吸收XXX線特性,可用於製造醫用X光機和矯形支架等。碳纖維複合材料還具有生物組織相容性和血液相容性,生物環境下穩定性好,也用作生物醫學材料。此外,複合材料還用於製造體育運動器件和用作建築材料等。

複合材料的發展和應用

複合材料電纜支架

  複合材料是指由兩種或兩種以上不同物質以不同方式組合而成的材料,它可以發揮各種材料的優點,克服單一材料的缺陷,擴大材料的應用範圍。由於複合材料具有重量輕、強度高、加工成型方便、彈性優良、耐化學腐蝕和耐候性好等特點,已逐步取代木材及金屬合金,廣泛應用於航空航天、汽車、電子電氣、建築、健身器材等領域,在近幾年更是得到了飛速發展。   隨著科技的發展,樹脂與玻璃纖維在技術上不斷進步,生產廠家的製造能力普遍提高,使得玻纖增強複合材料的價格成本已被許多行業接受,但玻纖增強複合材料的強度尚不足以和金屬匹敵。因此,碳纖維、硼纖維等增強複合材料相繼問世,使高分子複合材料家族更加完備,已經成為眾多產業的必備材料。目前全世界複合材料的年產量已達550多萬噸,年產值達1300億美元以上,若將歐、美的軍事航空航天的高價值產品計入,其產值將更為驚人。從全球範圍看,世界複合材料的生產主要集中在歐美和東亞地區。近幾年歐美複合材料產需均持續增長,而亞洲的日本則因經濟不景氣,發展較為緩慢,但中國尤其是中國內地的市場發展迅速。據世界主要複合材料生產商PPG公司統計,2000年歐洲的複合材料全球佔有率約為32%,年產量約200萬噸。與此同時,美國複合材料在20世紀90年代年均增長率約為美國GDP增長率的2倍,達到4%~6%。2000年,美國複合材料的年產量達170萬噸左右。特別是汽車用複合材料的迅速增加使得美國汽車在全球市場上重新崛起。亞洲近幾年複合材料的發展情況與政治經濟的整體變化密切相關,各國的佔有率變化很大。總體而言,亞洲的複合材料仍將繼續增長,2000年的總產量約為145萬噸,預計2005年總產量將達180萬噸。   從應用上看,複合材料在美國和歐洲主要用於航空航天、汽車等行業。2000年美國汽車零件的複合材料用量達14.8萬噸,歐洲汽車複合材料用量到2003年估計可達10.5萬噸。而在日本,複合材料主要用於住宅建設,如衛浴設備等,此類產品在2000年的用量達7.5萬噸,汽車等領域的用量僅為2.4萬噸。不過從全球範圍看,汽車工業是複合材料最大的用戶,今後發展潛力仍十分巨大,目前還有許多新技術正在開發中。例如,為降低發動機雜訊,增加轎車的舒適性,正著力開發兩層冷軋板間粘附熱塑性樹脂的減振鋼板;為滿足發動機向高速、增壓、高負荷方向發展的要求,發動機活塞、連桿、軸瓦已開始應用金屬基複合材料。為滿足汽車輕量化要求,必將會有越來越多的新型複合材料將被應用到汽車製造業中。與此同時,隨著近年來人們對環保問題的日益重視,高分子複合材料取代木材方面的應用也得到了進一步推廣。例如,用植物纖維與廢塑料加工而成的複合材料,在北美已被大量用作托盤和包裝箱,用以替代木製產品;而可降解複合材料也成為國內外開發研究的重點。   另外,納米技術逐漸引起人們的關注,納米複合材料的研究開發也成為新的熱點。以納米改性塑料,可使塑料的聚集態及結晶形態發生改變,從而使之具有新的性能,在克服傳統材料剛性與韌性難以相容的矛盾的同時,大大提高了材料的綜合性能。

樹脂基複合材料的增強材料

  樹脂基複合材料採用的增強材料主要有玻璃纖維、碳纖維、芳綸纖維、超高分子量聚乙烯纖維等。

玻璃纖維

  目前用於高性能複合材料的玻璃纖維主要有高強度玻璃纖維、石英玻璃纖維和高硅氧玻璃纖維等。由於高強度玻璃纖維性價比較高,因此增長率也比較快,年增長率達到10%以上。高強度玻璃纖維複合材料不僅應用在軍用方面,近年來民用產品也有廣泛應用,如防彈頭盔、防彈服、直升飛機機翼、預警機雷達罩、各種高壓壓力容器、民用飛機直板、體育用品、各類耐高溫製品以及近期報道的性能優異的輪胎帘子線等。石英玻璃纖維及高硅氧玻璃纖維屬於耐高溫的玻璃纖維,是比較理想的耐熱防火材料,用其增強酚醛樹脂可製成各種結構的耐高溫、耐燒蝕的複合材料部件,大量應用於火箭、導彈的防熱材料。迄今為止,中國已經實用化的高性能樹脂基複合材料用的碳纖維、芳綸纖維、高強度玻璃纖維三大增強纖維中,只有高強度玻璃纖維已達到國際先進水平,且擁有自主知識產權,形成了小規模的產業,現階段年產可達500噸。

碳纖維

  碳纖維具有強度高、模量高、耐高溫、導電等一系列性能,首先在航空航天領域得到廣泛應用,近年來在運動XX和體育用品方面也廣泛採用。據預測,土木建築、交通運輸、汽車、能源等領域將會大規模採用工業級碳纖維。1997~2000年間,宇航用碳纖維的年增長率估計為31%,而工業用碳纖維的年增長率估計會達到130%。中國的碳纖維總體水平還比較低,相當於國外七十年代中、末期水平,與國外差距達20年左右。國產碳纖維的主要問題是性能不太穩定且離散係數大、無高性能碳纖維、品種單一、規格不全、連續長度不夠、未經表面處理、價格偏高等。

芳綸纖維

  20世紀80年代以來,荷蘭、日本、前蘇聯也先後開展了芳綸纖維的研製開發工作。日本及俄羅斯的芳綸纖維已投入市場,年增長速度也達到20%左右。芳綸纖維比強度、比模量較高,因此被廣泛應用於航空航天領域的高性能複合材料零部件(如火箭發動機殼體、飛機發動機艙、整流罩、方向舵等)、艦船(如航空母艦、核潛艇、遊艇、救生艇等)、汽車(如輪胎帘子線、高壓軟管、摩擦材料、高壓氣瓶等)以及耐熱運輸帶、體育運動器材等。

超高分子量聚乙烯纖維

  超高分子量聚乙烯纖維的比強度在各種纖維中位居第一,尤其是它的抗化學試劑侵蝕性能和抗老化性能優良。它還具有優良的高頻聲納透過性和耐海水腐蝕性,許多國家已用它來製造艦艇的高頻聲納導流罩,大大提高了艦艇的探雷、掃雷能力。除在軍事領域,在汽車製造、船舶製造、醫療器械、體育運動器材等領域超高分子量聚乙烯纖維也有廣闊的應用前景。該纖維一經問世就引起了世界發達國家的極大興趣和重視。

熱固性樹脂基複合材料

  熱固性樹脂基複合材料是指以熱固性樹脂如不飽和聚酯樹脂、環氧樹脂、酚醛樹脂、乙烯基酯樹脂等為基體,以玻璃纖維、碳纖維、芳綸纖維、超高分子量聚乙烯纖維等為增強材料製成的複合材料。環氧樹脂的特點是具有優良的化學穩定性、電絕緣性、耐腐蝕性、良好的粘接性能和較高的機械強度,廣泛應用於化工、輕工、機械、電子、水利、交通、汽車、家電和宇航等各個領域。1993年世界環氧樹脂生產能力為130萬噸,1996年遞增到143萬噸,1997年為148萬噸,1999年150萬噸,2003年達到180萬噸左右。中國從1975年開始研究環氧樹脂,據不完全統計,目前中國環氧樹脂生產企業約有170多家,總生產能力為50多萬噸,設備利用率為80%左右。酚醛樹脂具有耐熱性、耐磨擦性、機械強度高、電絕緣性優異、低發煙性和耐酸性優異等特點,因而在複合材料產業的各個領域得到廣泛的應用。1997年全球酚醛樹脂的產量為300萬噸,其中美國為164萬噸。中國的產量為18萬噸,進口4萬噸。乙烯基酯樹脂是20世紀60年代發展起來的一類新型熱固性樹脂,其特點是耐腐蝕性好,耐溶劑性好,機械強度高,延伸率大,與金屬、塑料、混凝土等材料的粘結性能好,耐疲勞性能好,電性能佳,耐熱老化,固化收縮率低,可常溫固化也可加熱固化。南京金陵帝斯曼樹脂有限公司引進荷蘭Atlac系列強耐腐蝕性乙烯基酯樹脂,已廣泛用於貯罐、容器、管道等,有的品種還能用於防水和熱壓成型。南京聚隆複合材料有限公司、上海新華樹脂廠、南通明佳聚合物有限公司等廠家也生產乙烯基酯樹脂。   1971年以前中國的熱固性樹脂基複合材料工業主要是軍工產品,70年代后開始轉向民用。從1987年起,各地大量引進國外先進技術如池窯拉絲、短切氈、表面氈生產線及各種牌號的聚酯樹脂(美、德、荷、英、意、日)和環氧樹脂(日、德)生產技術;在成型工藝方面,引進了纏繞管、罐生產線、拉擠工藝生產線、SMC生產線、連續制板機組、樹脂傳遞模塑(RTM)成型機、噴XX成型技術、樹脂注XX成型技術及漁竿生產線等,形成了從研究、設計、生產及原材料配套的完整的工業體系,截止2000年底,中國熱固性樹脂基複合材料生產企業達3000多家,已有51家通過ISO9000質量體系認證,產品品種3000多種,總產量達73萬噸/年,居世界第二位。產品主要用於建築、防腐、輕工、交通運輸、造船等工業領域。在建築方面,有內外牆板、透明瓦、冷卻塔、空調罩、風機、玻璃鋼水箱、衛生潔具、凈化槽等;在石油化工方面,主要用於管道及貯罐;在交通運輸方面,汽車上主要有車身、引擎蓋、保險杠等配件,火車上有車廂板、門窗、座椅等,船艇方面主要有氣墊船、救生艇、偵察艇、漁船等;在機械及電器領域如屋頂風機、軸流風機、電纜橋架、絕緣棒、集成電路板等產品都具有相當的規模;在航空航天及軍事領域,輕型飛機、尾翼、衛星天線、火箭噴管、防彈板、防彈衣、魚雷等都取得了重大突破。

熱塑性樹脂基複合材料

pvd複合材料

  熱塑性樹脂基複合材料是20世紀80年代發展起來的,主要有長纖維增強粒料(LFP)、連續纖維增強預浸帶(MITT)和玻璃纖維氈增強型熱塑性複合材料(GMT)。根據使用要求不同,樹脂基體主要有PP、PE、PA、PBT、PEI、PC、PES、PEEK、PI、PAI等熱塑性工程塑料,纖維種類包括玻璃纖維、碳纖維、芳綸纖維和硼纖維等一切可能的纖維品種。隨著熱塑性樹脂基複合材料技術的不斷成熟以及可回收 利用的優勢,該品種的複合材料發展較快,歐美髮達國家熱塑性樹脂基複合材料已經佔到樹脂基複合材料總量的30%以上。   高性能熱塑性樹脂基複合材料以注XX件居多,基體以PP、PA為主。產品有管件(彎頭、三通、法蘭)、閥門、葉輪、軸承、電器及汽車零件、擠出成型管道、GMT模壓製品(如吉普車座椅支架)、汽車踏板、座椅等。玻璃纖維增強聚丙烯在汽車中的應用包括通風和供暖系統、空氣過濾器外殼、變速箱蓋、座椅架、擋泥板墊片、傳動皮帶保護罩等。   滑石粉填充的PP具有高剛性、高強度、極好的耐熱老化性能及耐寒性。滑石粉增強PP在車內裝飾方面有著重要的應用,如用作通風系統零部件,儀錶盤和自動剎車控制杠等,例如美國HPM公司用20%滑石粉填充PP製成的蜂窩狀結構的吸音天花板和轎車的搖窗升降器卷繩筒外殼。

印度研發複合材料武裝直升機

  雲母複合材料具有高剛性、高熱變形溫度、低收縮率、低撓曲性、尺寸穩定以及低密度、低價格等特點,利用雲母/聚丙烯複合材料可製作汽車儀錶盤、前燈保護圈、擋板罩、車門護 欄、電機風扇、百葉窗等部件,利用該材料的阻尼性可製作音響零件,利用其屏蔽性可製作蓄電池箱等。   中國的熱塑性樹脂基複合材料的研究開始於20世紀80年代末期,近十年來取得了快速發展,2000年產量達到12萬噸,約占樹脂基複合材料總產量的17%,,所用的基體材料仍以PP、PA為主,增強材料以玻璃纖維為主,少量為碳纖維,在熱塑性複合材料方面未能有重大突破,與發達國家尚有差距。

中國複合材料的發展潛力和熱點

  中國複合材料發展潛力很大,但須處理好以下熱點問題。

複合材料創新

  複合材料創新包括複合材料的技術發展、複合材料的工藝發展、複合材料的產品發展和複合材料的應用,具體要抓住樹脂基體發展創新、增強材料發展創新、生產工藝發展創新和產品應用發展創新。到2007年,亞洲占世界複合材料總銷售量的比例將從18%增加到25%,目前亞洲人均消費量僅為0.29kg,而美國為6.8kg,亞洲地區具有極大的增長潛力。

聚丙烯腈基纖維發展

  中國碳纖維工業發展緩慢,從CF發展回顧、特點、國內碳纖維發展過程、中國PAN基CF市場概況、特點、「十五」科技攻關情況看,發展聚丙烯腈基纖維既有需要也有可能。

玻璃纖維結構調整

  中國玻璃纖維70%以上用於增強基材,在國際市場上具有成本優勢,但在品種規格和質量上與先進國家尚有差距,必須改進和發展紗類、機織物、無紡氈、編織物、縫編織物、複合氈,推進玻纖與玻鋼兩行業密切合作,促進玻璃纖維增強材料的新發展。

開發能源、交通用複合材料市場

  一是清潔、可再生能源用複合材料,包括風力發電用複合材料、煙氣脫硫裝置用複合材料、輸變電設備用複合材料和天然氣、氫氣高壓容器;二是汽車、城市軌道交通用複合材料,包括汽車車身、構架和車體外覆蓋件,軌道交通車體、車門、座椅、電纜槽、電纜架、格柵、電器箱等;三是民航客機用複合材料,主要為碳纖維複合材料。熱塑性複合材料約占10%,主要產品為機翼部件、垂直尾翼、機頭罩等。中國未來20年間需新增支線飛機661架,將形成民航客機的大產業,複合材料可建成新產業與之相配套;四是船艇用複合材料,主要為遊艇和漁船,遊艇作為高級娛樂耐用消費品在歐美有很大市場,由於中國魚類資源的減少、漁船雖發展緩慢,但複合材料特有的優點仍有發展的空間。

纖維複合材料基礎設施應用

  國內外複合材料在橋樑、房屋、道路中的基礎應用廣泛,與傳統材料相比有很多優點,特別是在橋樑上和在房屋補強、隧道工程以及大型儲倉修補和加固中市場廣闊。

複合材料綜合處理與再生

  重點發展物理回收(粉碎回收)、化學回收(熱裂解)和能量回收,加強技術路線、綜合處理技術研究,示範生產線建設,再生利用研究,大力拓展再生利用材料在石膏中的應用、在拉擠製品中的應用以及在SMC/BMC模壓製品中的應用和典型產品中的應用。   21世紀的高性能樹脂基複合材料技術是賦予複合材料自修復性、自分解性、自診斷性、自製功能等為一體的智能化材料。以開發高剛度、高強度、高濕熱環境下使用的複合材料為重點,構築材料、成型加工、設計、檢查一體化的材料系統。組織系統上將是聯盟和集團化,這將更充分的利用各方面的資源(技術資源、物質資源),緊密聯繫各方面的優勢,以推動複合材料工業的進一步發展。

GPO-3介紹

  GPO-3層壓板是由無鹼玻璃纖維氈板浸以不飽和聚酯樹脂糊,並添加相應的添加劑經熱壓而成的硬性板狀絕緣材料。   GPO-3,又稱 UPGM-203 ,指的是不飽和聚酯玻璃纖維氈板材料,機械和電氣用,高濕下電氣性能好,中等溫度下機械性能好,具有阻燃性,耐電弧和耐抗漏電痕跡性能佳。   規格:0.8~100mm 1000×1200mm,1000×2000mm   顏色:紅色、白色、棕色、棕紅色等

GPO-3層壓板應用

  在斷路器中應用:框架式斷路器:安全擋板、安全遮板、間隔襯墊、相間隔板等。   塑殼式斷路器中的應用:相間隔板、滅弧室隔弧板等。   在電機馬達中應用:電機電樞部件,活動蓋板,槽楔定子、定墊片,薄墊片,碳刷座等   在開關設備中應用:隔板系統中的前端、後端、上端、底端、相間隔板等 其他應用:耐弧結構件

《複合材料》

圖書信息

  作 者:馮小明張崇才編著   出 版 社:重慶大學出版社   出版日期:2007-09   ISBN:756244136   版 次:1版   包 裝:平裝   開 本:16開   頁 數:277頁   字 數:443000千   印 張:1次   定 價:28.00元   叢書名:材料科學與工程專業本科系列教材

內容簡介

  本書主要介紹複合材料的基本概念、複合原理,以及不同基體複合材料的材料體系組成、製備工藝、性能及應用,同時論述了複合材料新的設計、製備方法和複合技術,還對複合材料的可靠性和質量評價進行了討論。本書適合作為材料科學與工程類本科教材,也可供從事複合材料領域的研究人員、工程技術人員參考。

目錄

  第1章 概論   1.1 複合材料的定義、命名和分類   1.2 複合材料的組成   1.3 複合材料的基本性能   第2章 複合材料的複合原理及界面   2.1 複合材料的複合原理   2.2 複合材料的界面   第3章 複合材料的增強材料   3.1 玻璃纖維增強材料   3.2 碳纖維增強材料   3.3 氧化鋁系列纖維   3.4 碳化硅纖維   3.5 芳綸纖維   3.6 晶須   3.7 顆粒增強材料   第4章 聚合物基複合材料   4.1 聚合物基複合材料概述   4.2 聚合物基複合材料設計   4.3 聚合物基複合材料的製造工藝和方法   4.4 聚合物基複合材料的應用   第5章 金屬基複合材料   5.1 金屬基複合材料概論   5.2 金屬基複合材料的製造方法   5.3 金屬基複合材料的性能與應用   第6章 陶瓷基複合材料   6.1 陶瓷基複合材料概論   6.2 陶瓷基複合材料的成型加工技術   6.3 陶瓷基複合材料的應用   第7章 水泥基複合材料   7.1 概述   7.2 高性能混凝土   7.3 纖維增強水泥基複合材料   7.4 聚合物混凝土複合材料   7.5 水泥基複合材料的應用   第8章 先進複合材料   8.1 碳/碳複合材料   8.2 納米複合材料   8.3 功能複合材料   8.4 梯度功能複合材料   第9章 材料複合新技術   9.1 原位複合技術   9.2 自蔓延複合技術   9.3 梯度複合技術   9.4 其他複合新技術   第10章 複合材料可靠性與無損評價   10.1 複合材料可靠性問題   10.2 從組分材料人手提高複合材料可靠性   10.3 從控制工藝質量來提高複合材料可靠性   10.4 環境條件下的可靠性評價   10.5 複合材料的無損檢測方法   10.6 複合材料質量評價與監控   參考文獻