脫氧核糖核酸(英語:Deoxyribonucleic acid,縮寫為DNA)又稱去氧核糖核酸,是一種分子,可組成遺傳指令,以引導生物發育與生命機能運作。主要功能是長期性的資訊儲存,可比喻為「藍圖」或「食譜」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與RNA所需。帶有遺傳訊息的DNA片段稱為基因,其他的DNA序列,有些直接以自身構造發揮作用,有些則參與調控遺傳訊息的表現。
DNA
[1]是一種長鏈聚合物,組成單位稱為脫氧
核苷酸(即 A-腺
嘌呤G-
鳥嘌呤C-胞
嘧啶T-
胸腺嘧啶) ,而
糖類與
磷酸分子借由酯鍵相連,組成其長鏈
骨架。每個糖分子都與四種
鹼基里的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成
遺傳密碼,是
蛋白質氨基酸序列
合成的
依據。讀取密碼的過程稱為
轉錄,是以DNA雙鏈中的一條為
模板複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如rRNA、snRNA與siRNA。在細胞內,DNA能
組織成
染色體結構,整組染色體則統稱為
基因組。染色體在
細胞分裂之前會先行複製,此過程稱為DNA複製。對
真核生物,如動物、植物及
真菌而言,染色體是存放于
細胞核內;對於
原核生物而言,如
細菌,則是存放在
細胞質中的類核里。染色體上的
染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行
交互作用,進而
調節基因的轉錄。
DNA是
大分子高分子聚合物,DNA
溶液為高分子溶液,具有很高的粘度,可被
甲基綠染成綠色。DNA對
紫外線有
吸收作用,當核酸
變性時,吸光值升高;當變性核酸可
復性時,吸光值又會
恢復到原來
水平。溫度、有機
溶劑、
酸鹼度、
尿素、
酰胺等
試劑都可以引起DNA分子變性,即使得DNA雙鍵間的氫鍵
斷裂,
雙螺旋結構解開。
分子結構
DNA是由許多
脫氧核苷酸殘基按一定順序彼此用3』,5』-
磷酸二酯鍵相連構成的長鏈。大多數DNA含有兩條這樣的長鏈,也有的DNA為單鏈,如
大腸桿菌噬菌體φX174、G4、M13等。有的DNA為環形,有的DNA為線形。在某些類型的DNA中,5-甲基
胞嘧啶可在一定限度內取代胞嘧啶,其中小麥胚DNA的5-甲基胞嘧啶特別豐富,可達6摩爾%。在某些噬菌體中,5-羥甲基胞嘧啶取代了胞嘧啶。40年代
後期,查加夫(E.Chargaff)發現不同
物種DNA的鹼基組成不同,但其中的腺嘌呤數等於其胸腺嘧啶數(A=T),鳥嘌呤數等於胞嘧啶數(G=C),因而嘌呤數之和等於嘧啶數之和。一般用幾個層次描繪DNA的結構。
一級結構
是指構成核酸的四種基本組成單位——
脫氧核糖核苷酸(核苷酸),通過3',5'-磷酸二酯鍵彼此連接起來的線形多聚體,以及起基本單位-脫氧核糖核苷酸的排列順序。
一級結構
每一種脫氧核糖核苷酸由三個部分所組成:一分子
含氮鹼基+一分子五碳糖(脫氧核糖)+一分子磷酸根。核酸的含氮鹼基又可分為四類:腺嘌呤(adenine,縮寫為A),胸腺嘧啶(thymine,縮寫為T),胞嘧啶(cytosine,縮寫為C)和鳥嘌呤(guanine,縮寫為G)。DNA的四種含氮鹼基組成具有物種
特異性。即四種含氮鹼基的
比例在同物種不同
個體間是一致的,但在不同物種間則有差異。DNA的四種含氮鹼基比例具有奇特的規律性,每一種
生物體DNA中 A=T ,C=G 查哥夫(Chargaff)法則(即
鹼基互補配對原則)。
二級結構
二級結構
是指兩條脫氧
多核苷酸鏈反向平行盤繞所形成的雙螺旋結構。DNA的二級結構分為兩大類:一類是
右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一類是
左手雙螺旋,如Z-DNA。
詹姆斯·沃森與佛朗西斯·克里克所發現的雙螺旋,是稱為B型的水結合型DNA,在細胞中最為常見(如圖)。也有的DNA為單鏈,一般見於原核生物,如
大腸桿菌噬菌體φX174、G4、M13等。有
的DNA為環形,有的DNA為線形。在鹼A與T之間可以形成兩個氫鍵,G
與C之間可以形成三個氫鍵,使兩條多聚脫氧核苷酸形 成互補的雙鏈,
由於組成
鹼基對的兩個鹼基的
分佈不在一個平面上,氫鍵使鹼基對沿長
軸
旋轉一定角度,使鹼基的形狀像螺旋槳葉片的樣子,整個DNA分子形
成雙螺旋纏繞狀。鹼基對之間的距離是0.34nm,10個鹼基對轉一周,故
旋轉一周(
螺距)是3.4nm,這是β-DNA的結構,在生物
體內自然
生成的
DNA幾乎都是以β-DNA結構
存在。
是指DNA中單鏈與雙鏈、雙鏈之間的相互作用形成的三鏈或四鏈結構。如H-DNA或R-環等三級結構。DNA的三級結構是指DNA進一步扭曲盤繞所形成的特定空間
三級結構
結構,也稱為
超螺旋結構。DNA的超螺旋結構可分為正、負超螺旋兩大類,並可互相轉變。超螺旋是克服張力而形成的。當DNA雙螺旋分子在溶液中以一定構象自由存在時,雙螺旋處於能量最低狀態此為鬆弛態。如果使這種正常的DNA分子額外地多轉幾圈或少轉幾圈,就是雙螺旋產生張力,如果DNA分子兩端是開放的,這種張力可通過鏈的轉動而釋放出來,DNA就恢復到正常的雙螺旋狀態。但如果DNA分子兩端是
固定的,或者是環狀分子,這種張力就不能通過鏈的旋轉釋放掉,只能使DNA分子本身發生扭曲,以此抵消張力,這就形成超螺旋,是雙螺旋的螺旋。
四級結構
核酸以反式作用存在(如
核糖體、
剪接體),這可看作是核酸的
四級水平的結構。
拓撲結構
也是DNA存在的一種形式。DNA的拓撲結構是指在DNA雙螺旋的基礎上,進一步扭曲所形成的特定空間結構。超螺旋結構是拓撲結構的主要形式,它可以分為正超螺旋和負超螺旋兩類,在相應條件下,它們可以相互轉變。
結構特點
a. DNA是由核酸的
單體聚合而成的聚合體。
b. 每一種核酸由三個部分所組成:一分子含氮鹼基+一分子五碳糖(脫氧核糖)+一分子磷酸根,DNA都是由C、H、O、N、P五種元素組成的。
c. 核酸的含氮鹼基又可分為四類:鳥嘌呤(Guanine)、胸腺嘧啶(Thymine)、腺嘌呤(Adenine)、胞嘧啶(Cytosine)
d. DNA的四種含氮鹼基組成具有物種特異性。即四種含氮鹼基的比例在同物種不同個體間是一致的,但在不同物種間則有差異。
e. DNA的四種含氮鹼基比例具有奇特的規律性,每一種生物體DNA中 A=T C=G 加卡夫法則。
DNA的結構目前一般劃分為一級結構、二級結構、三級結構、四級結構四個階段。
分佈功能
原核細胞的染色體是一個長DNA分子,但是原核細胞沒有真正的細胞核。
真核細胞核中有不止一個染色體,每個染色體也只含一個DNA分子。不過它們一般都比原核細胞中的DNA分子大而且和蛋白質結合在一起。DNA分子的功能是貯存決定物種的所有蛋白質和RNA結構的全部
遺傳信息;策劃生物有次序地合成細胞和組織組分的
時間和空間;確定生物生命
周期自始至終的活性和確定生物的
個性。除染色體DNA外,有極少量結構不同的DNA存在於真核細胞的
線粒體和
葉綠體中。DNA
病毒的
遺傳物質也是DNA。
複製方式
在雙螺旋的DNA中,分子鏈是由互補的核苷酸配對組成的,兩條鏈
依靠氫鏈結合在一起。由於氫鏈鏈數的
限制,DNA的鹼基排列配對方式只能是A對T(由兩個氫鍵相連)或C對G(由三個氫鏈相連)。因此,一條鏈的鹼基序列就可以決定了另一條的鹼基序列,因為每一條鏈的鹼基對和另一條鏈的鹼基對都必須是互補的。在DNA複製時也是採用這種互補配對的原則進行的:當DNA雙螺旋被
展開時,每一條鏈都用作一個模板,通過互補的原則補齊另外的一條鏈,即
半保留複製。
分子鏈的開
頭部分稱為3'端而結尾部分稱為5'端,這些數字表示脫氧核糖中的碳原子編號。
單鏈DNA
單鏈DNA(single-stranded DNA)大部分DNA以雙螺旋結構存在,但一經熱或鹼處理就會變為單鏈狀態。單鏈DNA就是指以這種狀態存在的DNA。單鏈DNA在分子流
體力學性質、吸收
光譜、鹼基
反應性質等方面都和雙鏈DNA不同。某些噬菌體粒子內含有單鏈環狀的DNA,這樣的噬菌體DNA在細胞內
增殖時則形成雙鏈DNA。
閉環DNA
閉環DNA(closed circular DNA)沒有斷口的雙鏈環狀DNA,亦稱為超螺旋DNA。由於具有螺旋結構的雙鏈各
自閉合,結果使整個DNA分子進一步旋曲而形成三級結構。另外如果一條或二條鏈的不同
部位上產生一個斷口,就會成為無旋曲的開環DNA分子。從細胞中提取出來的
質粒或病毒DNA都含有閉環和開環這二種分子。可根據兩者與
色素結合能力的不同,而將兩者
分離開來。
連接DNA
連接DNA (Linker DNA):
核小體中除146bp核心DNA 外的所有DNA。
模板DNA
模板DNA可以是單鏈分子,也可以是雙鏈分子,可以是線狀分子,也可以是環狀分子(線狀分子比環狀分子的
擴增效果稍好).就模板DNA而言,影響PCR的主要
因素是模板的
數量和純度。
互補DNA
互補DNA(cDNA,complementary DNA )構成基因的雙鏈DNA分子用一條單鏈作為模板,轉錄產生與其序列互補的信使RNA分子,然後在
反轉錄酶的作用下,以mRNA分子為模板,合成一條與mRNA序列互補的單鏈DNA,最後再以單鏈DNA為模板合成另一條與其互補的單鏈DNA,兩條互補的單鏈DNA分子組成一個雙鏈cDNA分子.因此,雙鏈cDNA分子的序列同轉錄產生的mRNA分子的基因是
相同的.所以一個cDNA分子就代表一個基因.但是cDNA仍不同於基因,因為基因在轉錄產生mRNA時,一些不編碼的序列即
內含子被
刪除了,保留的只是編碼序列,即
外顯子.所以cDNA序列都比基因序列要短得多,因為cDNA中不包括基因的非編碼序列---內含子。
DNA是1944年由美國人埃弗里發現的;1953年克里克
教授繪製出DNA的雙螺旋線結
構圖;1985年萊斯特大學的亞歷克·傑弗里斯教授又發明
利用DNA對
人體進行鑒別的辦法;DNA自1988年起開始應用在司法方面;1994年7月29日,法國法律規定了
使用基因標記的條件。
另外詹姆斯·沃森也有貢獻20世紀40年代末和50年代初,在DNA被確認為遺傳物質之後,
生物學家們不得不面臨著一個難題:DNA應該有什麼樣的結構,
才能擔當遺傳的重任?它必須能夠攜帶遺傳信息,能夠
自我複製傳遞遺傳信息,能夠讓遺傳信息得到
表達以控制細胞活動,並且能夠突變並保留突變。這4點,缺一不可,如何建構一個DNA分子模型解釋這一切?
根據
科學分析,每一
個人擁有400萬億個細胞(
皮膚、
肌肉、
神經等),
人體細胞除了
紅血球外都擁有一個由46種
染色體組成的細胞核,染色體本身又由DNA染色體絲構成,這種染色體絲在所有細胞中都是相同的。DNA由被稱作A(adenine)、T(thymine)、G(guanine)和C(cytosine)的核酸組成,正是它們構成我們人體的基因。根據DNA可以斷定兩代人之間的
親緣關係,因為一個孩子總是分別從父親和母親身上
接受一半基因物質的。
科學家們還把DNA研究的目標放在確定導致人們生病的基因起源方面,以便將來更好地
認識、
治療和預防危害人類
健康的各種
疾病。
DNA的可
信度如何呢?兩個人的染色體是否會相似?根據科學
試驗,這種可能性只有千萬分之一。然而,在所有過程中出現差錯將是可能的,這主要是在提取和
化驗標本的時候,標本也可能受到另一個人DNA的
污染。為了保證DNA的可靠性,必須在提取標本和化驗分析時嚴格把關。現在,由於採用為基因組序列計劃而研製的新
器械,不僅可以避免可能的錯誤,而且大大加快了DNA檢查的速度。
垃圾DNA
一項針對基因組進行的廣泛比較研究
顯示,問題的
答案可能就隱藏在生物的垃圾
脫氧核糖核酸(DNA)中。美國科學家發現,生物越複雜,其攜帶的垃圾DNA就越多,而恰恰是這些沒有編碼的「無用」DNA幫助高等
生物進化出了複雜的機體。
自從
第一個真核生物——包括從
酵母到人類的有細胞核的生物——的基因組被破譯以來,科學家一直想知道,為什麼生物的大多數DNA並沒有形成有用的基因。從突變保護到染色體的結構支撐,對於這種所謂的垃圾DNA的可能解釋有許多種。但是去年從人類、
小鼠和
大鼠身上得到的完全一致的關於垃圾DNA的研究結果卻表明,在這一區域中可能包含有重要的調節機制,從而能夠控制基礎的生物
化學反應和發育進程,這將幫助生物進化出更為複雜的機體。與簡單的真核生物相比,複雜生物有更多的基因不會發生突變的事實無疑極大地強化了這一發現。
為了對這一問題有更深的了解,由美國加利福尼亞大學聖塔克魯斯分校(UCSC)的
計算生物學家David Haussler領導的一個研究小組,對5種
脊椎動物——人、小鼠、大鼠、雞和
河豚——的垃圾DNA序列與4種
昆蟲、兩種蠕蟲和7種酵母的垃圾DNA序列進行了比較。研究人員從
對比結果中得到了一個驚人的模式:生物越複雜,垃圾DNA似乎就越重要。
這其中暗含的可能性在於,如果不同種類的生物具有相同的DNA,那麼這些DNA必定是用來解決一些關鍵性的問題的。酵母與脊椎動物共享了一定數量的DNA,畢竟它們都需要製造蛋白質,但是只有15%的共有DNA與基因無關。研究小組在7月14日的《基因組研究》雜誌網路版上
報告說,他們將酵母與更為複雜的蠕蟲進行了比較,後者是一種
多細胞生物,發現有40%的共有DNA沒有被編碼。隨後,研究人員又將脊椎動物與昆蟲進行了對比,這些生物比蠕蟲更為複雜,結果發現,有超過66%的共有DNA包含有沒有編碼的DNA。
參與該項研究工作的UCSC計算生物學家Adam Siepel指出,有關蠕蟲的研究結果需要慎重對待,這是由於科學家僅僅對其中的兩個基因組進行了分析。儘管如此,Siepel還是認為,這一發現有力
地支持了這樣一種理論,即脊椎動物和昆蟲的生物複雜性的增加主要是由於基因調節的精細模式。
DNA探針
DNA探針是最常用的核酸探針,指
長度在幾百鹼基對以上的雙鏈DNA或單鏈DNA探針。現已獲得DNA探針數量很多,有細菌、病毒、
原蟲、真菌、動物和人類細胞DNA探針。這類探針多為某一基因的全部或部分序列,或某一非編碼序列。這些DNA片段須是特異的,如細菌的
毒力因子基因探針和人類Alu探針。這些DNA探針的獲得有賴於分子
克隆技術的發展和應用。以細菌為例,目前
分子雜交技術用於細菌的分類和菌種
鑒定比之G+C百分比值要準確的多,是細菌分類學的一個發展方向。加之分子雜交技術的
高敏感性,分子雜交在
臨床微生物診斷上具有廣闊的前景。細菌的基因組大小約5×106bp,約含3000個基因。各種細菌之間絕大部分DNA是相同的,要獲得某細菌特異的核酸探針,通常要採取建立細菌基因組DNA文庫的辦法,即將細菌DNA切成小片段後分別克隆得到包含基因組的全信息的克隆庫。然後用多種其它菌種的DNA作探針來篩選,產生雜交信號的克隆被
剔除,最後剩下的不與任何其它細菌雜交的克隆則可能含有該細菌特異性DNA片段。將此
重組質粒標記後作探針進一步鑒定,亦可經DNA序列分析鑒定其基因來源和功能。因此要得到一種特異性DNA探針,常常是比較繁瑣的。探針DNA克隆的篩選也可採用
血清學方法,所不同的是所建DNA文庫為可表達性,克隆菌落或
噬斑經裂解后釋放出表達
抗原,然後用來源細菌的多克隆
抗血清篩選
陽性克隆,所得到多個陽性克隆再經其它細菌的抗血清篩選,最後只與本細菌抗血清反應的表達克隆即含有此細菌的特異性基因片段,它所編碼的蛋白是該菌種所特有的。用這種表達文庫篩選得到的顯然只是特定基因探針。
DNA修復(DNA repairing)是細胞對DNA受
損傷后的一種反應,這種反應可能使DNA結構恢複原樣,重新能執行它原來的功能;但有時並非能完全
消除DNA的損傷,只是使細胞能夠
耐受這DNA的損傷而能繼續
生存。也許這未能完全修復而存留下來的損傷會在適合的條件下顯示出來(如
細胞的癌變等),但如果細胞不具備這修復功能,就無法對付經常在發生的DNA損傷事件,就不能生存。所以研究DNA修復也是探索生命的一個重要方面,而且與
軍事醫學、
腫瘤學等密切相關。對不同的DNA損傷,細胞可以有不同的修復反應。
DNA複製
DNA複製是指DNA雙鏈在細胞分裂以
前進行的複製過程,複製的結果是一條雙鏈變成兩條一樣的雙鏈(如果複製過程正常的話),每條雙鏈都與原來的雙鏈一樣。這個過程是通過名為半保留複製的機制來得以順利完成的。複製可以分為以下幾個階段:
起始階段:解旋酶在
局部展開雙螺旋結構的DNA分子為單鏈,
引物酶辨認起始
位點,以解開的一段DNA為模板,按照5'到3'方向合成RNA短鏈。形成RNA引物。
DNA片段的生成:在引物提供了3'-OH末端的基礎上,DNA
聚合酶催化DNA的兩條鏈同時進行複製過程,由於複製過程只能由5'->3'方向合成,因此一條鏈能夠連續合成,另一條鏈分段合成,其中每一段短鏈成為岡崎片段(Okazaki fragments)。
RNA引物的
水解:當DNA合成一定長度后,DNA聚合酶水解RNA引物,補填缺口。
DNA
連接酶將DNA片段連接起來,形成完整的DNA分子。
最後DNA新合成的片段在旋轉酶的幫助下重新形成螺旋狀。
DNA重組
20世紀50年代,DNA雙螺旋結構被
闡明,揭開了
生命科學的新篇章,開創了科學技術的新時代。隨後,遺傳的分子機理――DNA複製、遺傳密碼、遺傳信息傳遞的中心法則、作為遺傳的基本單位和細胞工程藍圖的基因以及
基因表達的調控相繼被認識。至此,人們已完全認識到
掌握所有生物
命運的東西就是DNA和它所包含的基因,生物的進化過程和生命過程的不同,就是因為DNA和基因運作軌跡不同所致。
知道DNA的重大作用和
價值后,生命科學家首先想到能否在某些與人類利益密切相關的方面打破自然遺傳的鐵律,讓患病者的基因改邪歸正以達
治病目的,把不同來源的基因片段進行「嫁接」以產生新品種和新品質……於是,一個充滿了
誘惑力的科學幻想奇跡般地成為
現實。這是發生在20世紀70年代初的事情。
實現這一科學奇跡的科技手段就是DNA重組技術。1972年,美國科學家保羅.伯格首次成功地重組了世界上第一批DNA分子,標志著DNA重組技術――
基因工程作為現代
生物工程的基礎,成為現代
生物技術和生命科學的基礎與核心。
DNA重組技術的具體內容就是採用人工手段將不同來源的含某種特定基因的DNA片段進行重組,以達到改變生物基因類型和獲得特定
基因產物的目的的一種高科學技術。
到了20世紀70年代中後期,由於出現了工程菌以及實現DNA重組和后處理都有工程化的性質,基因工程或遺傳工程作為DNA重組技術的代名詞被廣泛使用。現在,基因工程還包括基因組的改造、核酸序列分析、分子進化分析、分子
免疫學、
基因克隆、
基因診斷和
基因治療等內容。可以說,DNA重組技術創立近 30多年來所獲得的豐碩成果已經把人們帶進了一個不可思議的夢幻般的科學世界,使人類獲得了打開生命奧秘和防病治病「魔盒」的金鑰匙。
目前,DNA重組技術已經取得的成果是多方面的。到20世紀末,DNA重組技術最大的應用領域在醫藥方面,包括活性
多肽、蛋白質和
疫苗的生產,疾病發生機理、診斷和治療,新基因的分離以及
環境監測與
凈化。
許多
活性多肽和蛋白質都具有治療和預防疾病的作用,它們都是從相應的基因中產生的。但是由於在組織細胞內
產量極微,所以採用
常規方法很難獲得足夠量供臨床應用。
基因工程則突破了這一局限性,能夠大量生產這類多肽和蛋白質,迄今已成功地生產出治療
糖尿病和
精神分裂症的
胰島素,對
血癌和某些實體腫瘤有
療效的
抗病毒劑――
干擾素,治療
侏儒症的人體
生長激素,治療
肢端肥大症和
急性胰腺炎的
生長激素釋放
抑制因子等100多種
產品。
基因工程還可將有關抗原的DNA導入活的微生物,這種微生物在受免疫
應激后的宿主體內生長可產生弱毒活疫苗,具有抗原刺激
劑量大、且持續時間長等優點。目前正在研製的基因工程疫苗就有數十種之多,在對付細菌方面有針對
麻風桿菌、
百日咳桿菌、
淋球菌、
腦膜炎雙球菌等的疫苗;在對付病毒方面有針對
甲型肝炎、
乙型肝炎、
巨細胞病毒、
單純皰疹、
流感、人體
免疫缺陷病毒等的疫苗……。我國
乙肝病毒攜帶者和
乙肝患者多達一二億,這一情況更促使了我國科學家自行成功研製出
乙肝疫苗,取得了巨大的社會效益和
經濟效益。
抗體是
人體免疫系統防病抗病的主要武器之一,20世紀70年代創立的
單克隆抗體技術在防病抗病方面雖然發揮了重要作用,但由於人源性單抗很難獲得,使得單抗在臨床上的應用受到限制。為解決此問題,近年來科學家採用DNA重組技術已獲得了人源性抗體,這種抗體既可保證它與抗原結合的專一性和親
合力,又能保證正常功能的發揮。目前,已有多種這樣的抗體進行了
臨床試驗,如抗HER-2人源化單抗治療
乳腺癌已XXⅢ期試驗,抗IGE人源化單抗治療
哮喘病已XXⅡ期試驗。
抗生素在治療疾病上起到了重要作用,隨著抗生素數量的增加,用傳統方法發現新抗生素的幾率越來越低。為了獲取更多的新型抗生素,採用DNA重組技術已成為重要手段之一。目前人們已獲得數十種基因工程「雜合」的抗生素,為臨床應用開闢了新的治療途徑。
值得指出的是,以上所述基因工程多肽、蛋白質、疫苗、抗生素等防治
藥物不僅在有效控制疾病,而且在避免毒
副作用方面也往往優於以傳統方法生產的
同類藥品,因而更受人們青睞。
人類疾病都直接或間接與基因相關,在基因水平上對疾病進行診斷和治療,則既可達到
病因診斷的準確性和原始性,又可使診斷和治療工作達到特異性強、
靈敏度高、簡便快速的目的。于基因水平進行診斷和治療在專業上稱為基因診斷和基因治療。目前基因診斷作為第四代
臨床診斷技術已被廣泛應用於對
遺傳病、腫瘤、
心腦血管疾病、病毒細菌
寄生蟲病和
職業病等的診斷;而基因治療的目標則是通過DNA重組技術創建具有特定功能的
基因重組體,以補償失去功能的基因的作用,或是增加某種功能以利對異常細胞進行
矯正或消滅。
在理論上,基因治療是
治本治愈而無任何毒副作用的
療法。不過,儘管至今國際上已有100多個基因治療方案正處於臨床試驗階段,但基因治療在理論和技術上的一些難題仍使這種治療方法離大規模應用還有一段很長的距離。不論是確定基因病因還是實施基因診斷、基因治療、研究疾病發生機理,關鍵的先決條件是要了解特定疾病的相關基因。隨著「
人類基因組計劃」的臨近完成,科學家們對人體全部基因將會獲得全面的了解,這就為
運用基因重組技術造逼於人類健康事業
創造了條件。
不過,雖然
基因技術向人類展示了它奇妙的「魔術師」般的
魅力,但也有大量的科學家對這種技術的發展予以人類
倫理和生態演化的自然法則的衝擊表示出極大的
擔憂。從理論上來講,這種技術發展的一個極致就是使人類擁有了創造任何生命
形態或從未有過的生物的能力。人們能夠想像這將是怎樣的結果嗎
鑒定
親子關係目前用得最多的是DNA分型鑒定。人的
血液、
毛髮、
唾液、
口腔細胞等都可以用於用親子鑒定,十分方便。
一個人有23對(46條)染色體,同一對染色體同一位置上的一對基因稱為
等位基因,一般一個來自父親,一個來自母親。如果檢測到某個DNA位點的等位基因,一個與母親相同,另一個就應與父親相同,否則就存在疑問了。
利用DNA進行親子鑒定,只要作十幾至幾十個DNA位點作檢測,如果全部一樣,就可以確定親子關係,如果有3個以上的位點不同,則可排除親子關係,有一兩個位點不同,則應考慮
基因突變的可能,加做一些位點的檢測進行
辨別。DNA親子鑒定,否定親子關係的準確率幾近100%,肯定親子關係的準確率可達到99.99%。
DNA(脫氧核糖核酸)是人身體內細胞的原子物質。每個原子有46個染色體,另外,男性的XX細胞和婦人的XX,各有23個染色體,當XX和XX結合的時候。這46個原子染色體就製造一個生命,因此,每人從生父處
繼承一半的分子物質,而另一半則從生母處獲得。
DNA親子鑒定測試與傳統的血液測試有很大的不同。它可以在不同的
樣本上進行測試,包括血液,腮腔細胞,組織細胞樣本和XX樣本。由於血液型號,例如A型,B型,O型或RH型,在人口中比較普遍,用於分辨每一個人,便不如DNA親子鑒定測試有效。除了真正雙
胞胎外,每人的DNA是獨一無二的. 由於它是這樣獨特,就好像
指紋一樣,用於親子鑒定,DNA是最為有效的方法。我們的結果通常是比法庭上要求的還準確10到100倍。
通過
遺傳標記的
檢驗與分析來
判斷父母與子女是否親生關係,稱之為親子試驗或親子鑒定。DNA是人體遺傳的基本
載體,人類的染色體是由DNA構成的,每個人體細胞有23對(46條)成對的染色體,其分別來自父親和母親。夫妻之間各自提供的23條染色體,在XX后相互配對,構成了23對(46條)孩子的染色體。如此
循環往複構成生命的延續。
由於人體約有30億個核苷酸構成整個染色體系統,而且在XX細胞形成前的互換和組合是隨機的,所以世界上沒有任何兩個人具有完全相同的30億個核苷酸的組成序列,這就是人的遺傳
多態性。儘管
遺傳多態性的存在,但每一個人的染色體必然也只能來自其父母,這就是DNA親子鑒定的理論基礎。
傳統的血清方法能檢測
紅細胞血型、
白細胞血型、
血清型和紅細胞酶型等,這些
遺傳學標誌為蛋白質(包括
糖蛋白)或多肽,容易失活而導致檢材得不到
理想的檢驗結果。此外,這些遺傳標誌均為基因編碼的產物,多態信息含量(PIC)有限,不能反映DNA
編碼區的多態性,且這些遺傳標誌存在生理性、病理性變異(如A型、
O型血的人受大腸桿菌感染后,B抗原可能呈陽性。因此,其應用價值有限。
DNA檢驗可彌補
血清學方法的不足,故受到了
法醫物證學工作者的高度關注,近幾年來,人類基因組研究的進展日新月異,而
分子生物學技術也不斷完善,隨著基因組研究向各學科的不斷滲透,這些學科的進展達到了前所未有的高度。在
法醫學上,STR位點和
單核苷酸(SNP)位點檢測分別是第二代、第三代DNA分析技術的核心,是繼RFLPs(
限制性片段長度多態性)VNTRs(可變數量串聯
重複序列多態性)研究而發展起來的檢測技術。作為最前沿的刑事生物技術,DNA分析為法醫物證檢驗提供了科學、可靠和快捷的手段,使物證鑒定從個體排除過渡到了可以作
同一認定的水平,DNA檢驗能直接認定犯罪、為兇殺案、
強姦殺人案、碎屍案、強姦致孕案等重大疑難
案件的偵破提供準確可靠的依據。隨著DNA技術的發展和應用,DNA標誌系統的檢測將成為破案的重要手段和途徑。此方法作為親子鑒定已經是非常成熟的,也是國際上公認的最好的一種方法。特別提到一點:
同卵雙胞胎的DNA檢測結果是一樣的。
DNA超速離心
近代質粒DNA分離純化以從大腸桿菌中分離為代表,鑒於大腸桿菌(
E.coli)在分子生物學研究中的重要地位,從大腸桿菌(
E.coli)中分離純化質粒DNA(Plasmid DNA)成為近年來超
離心技術中一個重要
課題。而質粒DNA的快速分離純化又對超離心設備(
超速離心機、轉頭和附屬設備)提出了更高要求。
E.coli是典型的原核細胞生物,由於原核細胞缺乏其核細胞所具有的那種由
單位膜組成的可把多種功能組分分隔為專一化的和局部獨立區域的
內膜系統,因而沒有其核細胞所包含的
細胞器(核、
內質網、
高爾基體、線拉體、
溶酶體等等)。電鏡
顯微照片顯示E.coli有兩個可以區別的內部區域一一細胞質和核質,在它們外面圍著一層較薄的
細胞質膜和很厚的
細胞壁,在細胞壁外部附著一些一端
遊離的
鞭毛。質粒DNA位於核區,以細絲狀存在,這種細絲狀物在多種情況下是極長的環狀DNA的一些片斷所摺疊起來的聚密體。
針對
E.coli的顯微結構待點,在進行超離心分離純化質粒DNA之前的預處理順序是:
E.coli→用
溶菌酶去細胞壁→用
表面活性劑如SDS、Trit X-100等EE
細胞膜→用
乙酸鈉溶液使DNA、RNA及蛋白質大部分
沉澱(90%以上)。
沉澱物可以在加入TE
緩衝液(10mM Tris-HCL, lmM EDTA,pH8.0)後
分子篩技術去除蛋白和RNA; 也可以用超速離心法去除蛋白質和RNA,去級狀DNA或DNA斷片。
質粒DNA超速離心的分離方法
傳統的分離方法:數年前,由於受設備條件限制,質粒DNA的分離一般用CsCl平衡等
密度離心法,自形成梯度。以10~12ml單管容量為例,用甩平轉頭分離,36.000rpm×60小時,用角式轉頭分離45,000rpm×36小時,前者包括加
減速在內共用去1.3億轉驅動部
壽命,後者也要用去1億轉驅動部壽命,這對當時超速離心機總壽命為100~200億轉來看,無疑每次
實驗費用過高,加上CsCl用量多、價格貴等因素,使這類分離純化工作成為非常昂貴的實驗。
質粒DNA超速離心分離的最新進展
1.超速垂直管轉頭的離心分離(欽合金或碳纖維製造的):從1975年垂直管轉頭向世后,近年來各主要離心機生產商開發的垂直管轉頭,單管容量0.2ml到4Oml,最高轉速從50,000rpm到120,000rpm,RCFmax可達700,000Xg,90年代開發的新機型和轉頭己能夠使質粒DNA垂直管離心分離實驗做起來得心應手。
3.近垂直管轉頭離心分離:為了消除垂直管轉頭用於質粒DNA離心在壁部形成的RNA沉澱對已形成的DNA區帶的污染,同時也為了改進一般斜角式轉頭(傾角25·——35·)由於沉降距離較長,因而分離時間也較長的缺點,近幾年開發了多種近垂直管轉頭(即Near VerticalTube Rot時,簡稱NVT轉頭或Neo Angle Rotor,小假角轉頭,簡稱NT).它們的離心管縱剖面中心軸線與離心機驅動軸線之間夾角在7.5·——10·之間,轉速從65,000rpm到120,OOOrpm,RCFmax可達646,000×g單管容量從2ml至13.5ml。NVT(或NT)轉頭的開發主要是為質粒DNA分離而
設計,當然它也適用於線粒體DNA、染色體DNA、RNA及血清
脂蛋白的分離·純化。
3.不連續階梯梯度分離:質校DNA分離純化傳統方法是採用金管CsCl自形成梯度平衡等密度離心法,離心開始時金管CsCl密度均一,樣品
均勻分佈其中。
與蛋白質的交互作用
脫氧核糖核酸若要發揮其
功用,必須
依賴與蛋白質之間的交互作用,有些蛋白質的作用不具專一性,有些則只專門與個別的脫氧核糖核酸序列結合。聚合酶在各類
酵素中尤其重要,此種蛋白質可與脫氧核糖核酸結合,並作用於轉錄或脫氧核糖核酸複製過程。脫氧核糖核酸結合蛋白脫氧核糖核酸結合蛋白 脫氧核糖核酸與組織蛋白(上圖白
色部分)的交互作用,這種蛋白質中的
鹼性氨基酸(左下藍色),可與脫氧核糖核酸上的酸性磷酸基團結合(右下
紅色)。結構蛋白可與脫氧核糖核酸結合,是非專一性脫氧核糖核酸-
蛋白質交互作用的常見例子。染色體中的結構蛋白與脫氧核糖核酸組合成複合物,使脫氧核糖核酸組織成緊密結實的染色質構造。對真核生物來說,染色質是由脫氧核糖核酸與一種稱為組織蛋白的小型
鹼性蛋白質所組合而成;而原核生物體內的此種結構,則摻雜了多種類型的蛋白質。雙股脫氧核糖核酸可在組織蛋白的表面上附著並纏繞整整兩圈,以形成一種稱為核小體的盤狀複合物。組織蛋白里的鹼性殘基,與脫氧核糖核酸上的酸性糖磷酸骨架之間可形成
離子鍵,使兩者發生非專一XX互作用,也使複合物中的鹼基序列相互分離。在鹼性氨基酸殘基上所發生的化學
修飾有甲基化、磷酸化與
乙酰化等,這些化學作用可使脫氧核糖核酸與組織蛋白之間的作用
強度發生變化,進而使脫氧核糖核酸與
轉錄因子接觸的難易度改變,影響轉錄作用的速率。其他位於染色體內的非專一性脫氧核糖核酸結合蛋白,還包括一種能優先與脫氧核糖核酸結合,並使其扭曲的高移動性群蛋白。這類蛋白質可以改變核小體的排列方式,產生更複雜的染色質結構。脫氧核糖核酸結合蛋白中有一種專門與單股脫氧核糖核酸結合的類型,稱為單股脫氧核糖核酸結合蛋白。人類的複製蛋白A是此類蛋白中獲得較多研究的成員,作用於多數與解開雙螺旋有關的過程,包括脫氧核糖核酸複製、重組以及脫氧核糖核酸修復。這類結合蛋白可固定單股脫氧核糖核酸,使其變得較為
穩定,以避免形成莖環(stem-loop),或是因為
核酸酶的作用而水解。 相對而言,其他的蛋白質則只能與特定的脫氧核糖核酸序列進行專一性結合。大多數關於此類蛋白質的研究集中於各種可調控轉錄作用的轉錄因子。這類蛋白質中的每一種,都能與特定的脫氧核糖核酸序列結合,進而
活化或抑制位於
啟動子附近序列的
基因轉錄作用。轉錄因子有兩種作用方式,第一種可以直接或經由其他中介蛋白質的作用,而與負責轉錄的RNA聚合酶結合,再使聚合酶與啟動子結合,並開啟轉錄作用。第二種則與專門修飾組織蛋白的酵素結合於啟動子上,使脫氧核糖核酸模板與聚合酶發生接觸的難度改變。由於目標脫氧核糖核酸可能
散布在生物體中的整個基因組中,因此改變一種轉錄因子的活性可能會影響許
多基因的運作。這些轉錄因子也因此經常成為信號傳遞過程中的作用目標,也就是作為細胞反映環境改變,或是進行
分化和發育時的媒介。具專一性的轉錄因子會與脫氧核糖核酸發生交互作用,使脫氧核糖核酸鹼基的周圍產生許多接觸點,讓其他蛋白質得以「讀取」這些脫氧核糖核酸序列。多數的鹼基交互作用發生在大凹槽,也就是最容易從外界接觸鹼基的部位
發現歷史
最早分離出DNA的弗雷德里希·米歇爾是一名瑞士
醫生,他在1869年,從廢棄
繃帶里所殘留的
膿液中,發現一些只有
顯微鏡可觀察的物質。由於這些物質位於細胞核中,因此米歇爾稱之為「
核素」(nuclein)。到了1919年,菲巴斯·利文進一步辨識出組成DNA的鹼基、糖類以及磷酸核苷酸單元[3],他認為DNA可能是許多核苷酸經由磷酸基團的聯結,而串聯在一起。不過他所提出概念中,DNA長鏈較短,且其中的鹼基是以固定順序重複排列。1937年,威廉·阿斯特伯里完成了第一張X光繞XX圖,闡明了DNA結構的規律性。
1928年,弗雷德里克·格里菲斯從格里菲斯實驗中發現,平滑型的
肺炎球菌,能轉變成為
粗糙型的同種細菌,方法是將已死的平滑型與粗糙型
活體混合在一起。這種
現象稱為「轉型」。但造成此現象的因子,也就是DNA,是直到1943年,才由奧斯瓦爾德·埃弗里等人所辨識出來。1953年,阿弗雷德·赫希與瑪莎·蔡斯確認了DNA的遺傳功能,他們在赫希-蔡斯實驗中發現,DNA是T2噬菌體的遺傳物質。
劍橋大學里一面紀念克里克與DNA結構的彩繪窗。到了1953年,當時在卡文迪許實驗室的詹姆斯·沃森與佛朗西斯·克里克,依據倫敦國王學院的羅莎琳·富蘭克林所拍攝的X光繞XX圖及相關資料,提出了最早的DNA結構精確模型,並發表于《自然》
期刊。五篇關於此模型的實驗證據
論文,也同時以同一主題發表于《自然》。其中包括富蘭克林與雷蒙·葛斯林的論文,此文所附帶的X光繞XX圖,是沃森與克里克闡明DNA結構的關鍵證據。此外莫里斯·威爾金斯團隊也是同期論文的發表者之一。富蘭克林與葛斯林隨後又提出了A型與B型DNA雙螺旋結構之間的差異。1962年,沃森、克里克以及威爾金斯共同獲得了
諾貝爾生理學或醫學獎。
克里克在1957年的一場演說中,提出了分子生物學的中心法則,預測了DNA、RNA以及蛋白質之間的關係,並
闡述了「轉接子假說」(即後來的tRNA)。1958年,馬修·梅瑟生與富蘭克林·史達在梅瑟生-史達實驗中,確認了DNA的複製機制[16]。後來克里克團隊的研究顯示,遺傳密碼是由三個鹼基以不重複的方式所組成,稱為密碼子。這些密碼子所構成的遺傳密碼,最後是由哈爾·葛賓·科拉納、羅伯特·W·霍利以及馬歇爾·沃倫·尼倫伯格解出[17]。為了測出所有人